a2 United States Patent

Weston

US011222156B2

US 11,222,156 B2
Jan. 11, 2022

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

METHODS AND SYSTEMS FOR
FACILITATING DESIGNING A
PROGRAMMABLE LOGIC DEVICE

Applicant: Clarence Yandell Weston, Elkridge,

MD (US)

Inventor: Clarence Yandell Weston, Elkridge,
MD (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 17/035,326

Filed: Sep. 28, 2020

Prior Publication Data

US 2021/0097223 Al Apr. 1, 2021

Related U.S. Application Data

Provisional application No. 62/906,570, filed on Sep.
26, 2019.

Int. CI.
GOGF 30/343 (2020.01)

GOGF 30/327 (2020.01)

GOGF 30/3308 (2020.01)

GOGF 30/347 (2020.01)

GOGF 30/392 (2020.01)

G060 30/06 (2012.01)

U.S. CL

CPC ... GOGF 30/343 (2020.01); GO6F 30/327

(2020.01); GO6F 30/3308 (2020.01); GO6F
30/347 (2020.01); GOGF 30/392 (2020.01);
G06Q 30/0621 (2013.01)

Field of Classification Search
CPC .. GO6F 30/343; GO6F 30/327; GOGF 30/3308;
GO6F 30/347; GO6F 30/392; GO6Q
30/0621

Y/‘ 200

USPC 716/117, 116, 121, 128, 104; 703/14
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,907,599 B1* 6/2005 Kashaiccccooeeevnnen GOG6F 8/51

717/137

10,001,943 B2* 6/2018 Parra ..o GOG6F 3/0673

2004/0045015 Al* 3/2004 Haji-Aghajani GOGF 30/34

719/328

2013/0124891 Al* 5/2013 Donaldson GOGF 1/324

713/322

2017/0083586 Al* 3/2017 Huang GOGF 3/04886
(Continued)

Primary Examiner — Phallaka Kik

(57) ABSTRACT

Disclosed herein is a method of designing a programmable
logic device (PLD), in accordance with some embodiments.
Accordingly, the method comprises transmitting module
indications corresponding to application modules to a client
device. Further, the method comprises receiving Hardware
Description Language (HDL) code expressing a design of a
PLD from the client device. Further, the method comprises
analyzing the HDL code. Further, the method comprises
retrieving an application module and a framework module
corresponding to an API call based on the analyzing. Fur-
ther, the method comprises instantiating the framework
module and the application module based on the retrieving.
Further, the method comprises configuring common syn-
chronous logic components and an interconnect infrastruc-
ture based on the API call. Further, the method comprises
generating a flat framework circuit data corresponding to the
PLD based on the instantiating and the configuring. Further,
the method comprises transmitting the flat framework circuit
data to the client device.

11 Claims, 30 Drawing Sheets

TRANSMITTING, USING A COMMUNICATION DEVICE, A
PLURALITY OF MODULE INDICATIONS CORRESPONBING TO A
PLURALITY OF APPLICATION MODULES TO A CLIENT DEVICE

¥

204

RECEIVING, USING THE COMMUNICA TION DEVICE, A
HARDWARE DESCRIPTION TANGUAGE (HDLY CODE EXPRESSING
ADESIGN OF A PLD FROM THE CLIENT DEVICE

¥

206

ANALYZING, USING A PROCESSING DEVICE, THE HDL CODE

¥

RETRIEVING, USING A STORAGE DEVICE, AT LEAST ONE
APPLICATION MODULE AND FRAMEWORK MODULE
CORRESPONDING TO A¥ LEAST ONE APL CALL BASED ON {HE
ANALYZING OF TITETIDL CODT

208

¥

INSTANTIATING, USING THE PROCESSING DEVICE, THE
FRAMEWORK MODULE AND THE AT LEAST ONE APPLICATION
MODULE BASED ON THE RETRIEVING

210

¥

CONFIGURING, USING THE PROCESSING DEVICE, TACTTOF A
PLURALITY OF COMMON SYNCHRONOL'S LOGIC COMPONENTS
AND AN INTERCONNGCT INFRASTRUCTURE BASED ON THE AT

LEAST ONEAPICALL

I3

GENERATING, USING THE PROCESSING DEVICE, A FLAT
FRAMEWORK CIRCUIT DATA CORRESPONDING TO THE PLD
BASED ON THE INSTANTIATING AND THE CONFIGURING

214

-

¥

TRANSMITTING, USING THE COMMUNICATION DEVICE, THE
FLAT FRAMEWORK CIRCUIT DATA 1O THE CLIENT DEVICE

|/;m

US 11,222,156 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2017/0111435 Al* 4/2017 Jacob HO4L 67/1097

2017/0359237 Al* 12/2017 Hao HO04W 12/069

* cited by examiner

U.S. Patent

Jan. 11, 2022

Sheet 1 of 30

[y
[}

US 11,222,156 B2

- APLURALITY OF MODULE
INDICATIONS

- A HARDWARE DESCRIPTION /
LANGUAGE (HDL) CODE /
- AFLAT FRAMEWORK //
CIRCUIT DATA
i
A4
) =
O @
e N \’04//.
/ o 102 N —
)
Sﬂ- . ™ /\
{f /‘,
\) ’/
1300 7 e}
AN
<<ﬁ>>

FIG. 1

U.S. Patent Jan. 11, 2022 Sheet 2 of 30 US 11,222,156 B2

v/ 200
202

TRANSMITTING, USING A COMMUNICATION DEVICE, A /
PLURALITY OF MODULE INDICATIONS CORRESPONDING TO A
PLURALITY OF APPLICATION MODULES TO A CLIENT DEVICE

v 204
RECEIVING, USING THE COMMUNICATION DEVICE, A Y4
HARDWARE DESCRIPTION LANGUAGE (HDL) CODE EXPRESSING
A DESIGN OF A PLD FROM THE CLIENT DEVICE

v 206

ANALYZING, USING A PROCESSING DEVICE, THE HDL CODE M

v
RETRIEVING, USING A STORAGE DEVICE, AT LEAST ONE 208
APPLICATION MODULE AND FRAMEWORK MODULE Va
CORRESPONDING TO AT LEAST ONE API CALL BASED ON THE
ANALYZING OF THE HDL CODE
v
210

INSTANTIATING, USING THE PROCESSING DEVICE, THE L
FRAMEWORK MODULE AND THE AT LEAST ONE APPLICATION
MODULE BASED ON THE RETRIEVING

v
CONFIGURING, USING THE PROCESSING DEVICE, EACH OF A 212
PLURALITY OF COMMON SYNCHRONOUS LOGIC COMPONENTS |2
AND AN INTERCONNECT INFRASTRUCTURE BASED ON THE AT
LEAST ONE API CALL

v

GENERATING, USING THE PROCESSING DEVICE, A FLAT 214
FRAMEWORK CIRCUIT DATA CORRESPONDING TO THE PLD "%~
BASED ON THE INSTANTIATING AND THE CONFIGURING

v
216
TRANSMITTING, USING THE COMMUNICATION DEVICE, THE | 2~

FLAT FRAMEWORK CIRCUIT DATA TO THE CLIENT DEVICE

FIG. 2

U.S. Patent Jan. 11, 2022 Sheet 3 of 30 US 11,222,156 B2

COMMUNICATION STORAGE DEVICE
DEVICE 306
302 _
PROCESSING
DEVICE
300 304

FIG. 3

U.S. Patent Jan. 11, 2022 Sheet 4 of 30 US 11,222,156 B2

V/ 400

RECEIVING, USING A COMMUNICATION DEVICE, A 402
PLURALITY OF MODULE DATA ASSOCIATED WITH A //
PLURALITY OF MODULES FROM AT LEAST ONE USER

DEVICE

) 4
ANALYZING, USING A PROCESSING DEVICE, THE 404
PLURALITY OF MODULE DATA TO OBTAIN /
COMMUNICATION CONFIGURATIONAL DATA
ASSOCIATED WITH THE PLURALITY OF THE MODULES

h 4 406
GENERATING, USING THE PROCESSING DEVICE, A /
SYNCHRONOUS LOGIC AND AN INTER-CONNECT
FRAMEWORK BASED ON THE ANALYZING

v
CONFIGURING, USING THE PROCESSING DEVICE, THE /408

SYNCHRONOUS LOGIC AND THE INTER-CONNECT
FRAMEWORK TO FACILITATE COMMUNICATION
AMONG THE PLURALITY OF MODULES

v
GENERATING, USING THE PROCESSING DEVICE, A FLAT /410

FRAMEWORK CIRCUIT BASED ON THE SYNCHRONOUS
LOGIC, THE INTER-CONNECT FRAMEWORK, AND THE
PLURALITY OF MODULE DATA

h 4 412
TRANSMITTING, USING THE COMMUNICATION DEVICE, %
THE FLAT FRAMEWORK CIRCUIT TO THE AT LEAST
ONE USER DEVICE

FIG. 4

U.S. Patent Jan. 11, 2022 Sheet 5 of 30 US 11,222,156 B2

FIG. §

US 11,222,156 B2

Sheet 6 of 30

Jan. 11, 2022

U.S. Patent

09

9 "OIA

d
<

1959y

sindinp

Ja1s18ay
alels

301D

synduy
21807
91e15 1XaN

U.S. Patent Jan. 11, 2022

Sheet 7 of 30 US 11,222,156 B2
g
= \
A
N
-+
>
S
AN
A '
~
.............. S
[t
=
5 5 %
3 Ak

U.S. Patent Jan. 11, 2022 Sheet 8 of 30 US 11,222,156 B2

o
<
oo\
(3]
e}
o
VS
A
O
o
oL
O .
) /N &
________________ El
O
Pedl R D N
CHVAN
¥
©
I
[an]
o o

U.S. Patent Jan. 11, 2022 Sheet 9 of 30 US 11,222,156 B2

902

=)
y
=
J
AN =
y e
i
o
22}
Y
RS el
9! &
< O &

US 11,222,156 B2

Sheet 10 of 30

Jan. 11, 2022

U.S. Patent

01 'Ol

/

80S

01¢

U.S. Patent Jan. 11, 2022 Sheet 11 of 30 US 11,222,156 B2

508

v/— 500

FIG. 11

502

U.S. Patent Jan. 11, 2022 Sheet 12 of 30 US 11,222,156 B2

508

510
/

v/ 500

FIG. 12

U.S. Patent Jan. 11, 2022 Sheet 13 of 30 US 11,222,156 B2

1308 4 COMPUTING DEVICE
e e
i [
} | ROM/RAM |
! [
: 104 OPERATING 13051 E
P SYSTEM MEMORY
X _/ SYSTEM |/ B
2 1306 N
i : : :
: i [
L 1320 B
t | | |PROGRAMMING Lo
¥ MODULES APPLICATION J 1
{
i : : :
{ i [
} | [
: i [
[
! |
5 PROGRAM DATA |), 1
2 N
| 1302 B
! |
|
| PROCESSING B
B UNIT L
{ i [
L I
! !
{
| REMOVABLE NON- - |
|| STORAGE ’1\309 REMOVABLE (— | INPUT DEVICES) [|
i STORAGE 1310 1312
| |
| OUTPUT COMMUNICATION N |
‘ DEVICE(S CONNECTION(S |
| © 314 O T e
£ |
1318
OTHER
COMPUTING
DEVICES

FIG. 13

U.S. Patent Jan. 11, 2022 Sheet 14 of 30 US 11,222,156 B2

FIG. 14

US 11,222,156 B2

Sheet 15 of 30

Jan. 11, 2022

U.S. Patent

S1OId

b yaod

U.S. Patent Jan. 11, 2022 Sheet 16 of 30 US 11,222,156 B2

tibrary icee;

use ieee.std_logic_1164.al;
use iees,numeric_std.all;

use ieee.5td_logicunsigned.sll;
use work USER_DEFS_PKG.all;
use work.SM_API_PKG.all;

mreecees meeeennna-COMMon Port Intesfac

entity vga_controfler is

generic (THIS_SM integer:=-1};

port{
clk rin std_fogic;
reset tin std_fogic
sm_input s in std_logic_vector{-1 cdownto 0};
sr_ouiput : outstd_logic_vector(10 downto 0;
sm_io rirout sted_logic_vector(-1 downto 0};
next_state_fec Toutnsr_array {0 ot 1};
state_reg_rec tin sir_array (O to 1}

|3

end entity vga_contratller;

architecture arch of vga_controller is

alias srris state_reg_rec{0);

alias state_reg : integeris state_reg_rec(0).state_reg;
constant st_vga_read : integer:=G;

constant st_vga_wait : integer:=1;

signal h_video_en : std_jogic;

signal h_sync : std_logic;

signal v_video_en : std_logic;

signal v_sync :std_togic;

signal video_on : std_fogic;

signal sprite_bit: std_logic;

begin

sm_output(7 downto Q) <= (7|6 => not sprite_bdit, 5|4|3 => sprite_hit, others => '0'} when {video_on ="1' else
{others =>'0');

sm_output(9 downto 8) <= v_sync & h_sync;

sm_output(10) <= '3 when {state_reg_rec{1).counter{D).value < ms{500)) else
0

h_video_en <='0" when {srr.counter(0}.vaiue <us{5.76} or sr.counter{0}.vlaue >= us{31.36})) else
a7

v_video_en <= '0" when {sir.counter{1}.value < ms{0.992) or srr.counter{l).value >= ms(16.352)) else
1

video_on <= h_video_en and v_video_en;

h_sync <=0 when {srr.counter{0}.value < us{3.84)) else
1

v_sync <="0" when {ssr.counter({1).value < us{64}) else
by

sprite_bit <= reversed{srr.dataf)({state_reg_rec(1}.delay.vaiue};

process(state_reg_rec)
begin

ACTIVE RESOURCE 0 {Of 1) State ~Lor-orrmscammnmrrrems creroeaea
DEFAULT_NEXT_STATE{ SYS_CLOCK, next_state_rec, state_reg_rec);

READ_FIFO_DATA(sprite, -1, -1, next_state_sec, state_reg_sec, '0'};
CONFIGURE_COUNTER(0, us{32) -1, -1, next_state_rec, state_reg_rec };
CONFIGURE_COUNTER(1, ms{16.672) -1, -1, next_state_rec, state_reg_rec };

CONFIGURE_COUNTER{ 0, s{1), -1, next_state_rec{1), state_reg_rec(1) };
ACTION{ rollover_count, 32, us{0.8}), next_state_rec(1}, state_reg_rec(1), h_video_en="1'};

SMO: case {state_seg)is
when st_vga_rcad =>
READ_FIFQ_DATA(sprite, 1, 1, next_state_rec, state_reg_rec, srr.fifo_read_seady};
when st_vga_wait =>
ACTION{ transition, 0, ms{1.042) -4, 1 next_state_rec, state_reg_rec);
end case;

end process;

end architecture arch;

FIG. 16

U.S. Patent Jan. 11, 2022 Sheet 17 of 30 US 11,222,156 B2

library ieee;

use ieee.std_logic_1164.al;
use ieee.numeric_std.all;

use ieee.std_logic_unsigned.all;
use work.USER_DEFS_PKG.all;
use work.SM_API_PKG.all;

Common Port Interfac

entity spriteis

generic (THIS_SM sinteger = -1);

port {
ctk Linstd_logic;
reset :instd_logic;
sm_input :instd_logic_vector(-1 downto 0);
sm_output 1 out std_logic_vector{-1 downto 0);
sm_io :inout std_logic_vector{-1 downto 0);
next_state_rec :out nsr_array {0 to 0);
state_reg_rec vinsrr_array (Oto 0}

)

end entity sprite;

architecture arch of spriteis

alias srr is state_reg_rec{0);

afias statejreg : integer is state_reg_rec{0}.state_reg;
constant hetlo_world : std_logic_vector_array := {
"10001001111100100000100000111111",
10001001000000100000100000100001",
"10001001000000100000100000100001",
"11111001111100100000100000100001",
*10001001000000100000100000100001",
"10001001000000100000100000100001",
"10001001111100111100111100111111"%,
"00000000000000000000000000000000",
"10000010111100111110010000111110",
"10000010111100111110010000111110",
"10010010100100100010010000100001",
"10101010100100111100010000100001",
"10101010100100100010010000100001",
"11000110100100100010010000100001",
¥10000010111100100010011110111110%,
"00000000000000000000000000000000"

b

begin

process(state_reg_rec)
begin

ACTIVE_RESOURCE 0 {of 0} state -1
DEFAULT_NEXT_STATE{ SYS_CLOCK, next_state_rec, state_reg_rec});

WRITE_FIFO_DATA(vga_congtroller, hello_world, srr.fifo_write_ready, 16, state_reg_rec(0).state_reg, next_state_rec, siate_reg_rec);

end process;

end architecture arch;

FIG. 17

US 11,222,156 B2

Sheet 18 of 30

Jan. 11, 2022

U.S. Patent

SI "Dl

{olinding™ NS 17

‘&3830_

Sai o108 _.m

= O O O

{olsuopTiaiunod 3
[oJaunod 17

19534 Q.

AP FL

T ~w3_ W‘

wﬁ_w_ 1 3 T | f 1 WJ..Wa

s g

SN 000000°C

T T 7 W3~O

US 11,222,156 B2

Sheet 19 of 30

Jan. 11, 2022

U.S. Patent

61 "OId

US 11,222,156 B2

Sheet 20 of 30

Jan. 11, 2022

U.S. Patent

07Ol

US 11,222,156 B2

Sheet 21 of 30

Jan. 11, 2022

U.S. Patent

1T "OId

2d0oaso}|19s0

W&
£ >

R e ’ A
STYNDIS 11dING /1Adut
h,..\ ...\;(..,..\\ i

US 11,222,156 B2

Sheet 22 of 30

Jan. 11, 2022

U.S. Patent

O

US 11,222,156 B2

Sheet 23 of 30

Jan. 11, 2022

U.S. Patent

YA |

US 11,222,156 B2

Sheet 24 of 30

Jan. 11, 2022

U.S. Patent

T "OId

U.S. Patent Jan. 11, 2022 Sheet 25 of 30 US 11,222,156 B2

FIG. 25

US 11,222,156 B2

Sheet 26 of 30

Jan. 11, 2022

U.S. Patent

w
”,w SIEROD o
g onpop

4
>
¥
i

{1 23 @}
w mw Apad uny Ing

zwmv
¥4

%
Fod

Bk

]

9¢ 'OId

Awpan was uy

wwﬁm B3 IR0y
w CENE vl mA,m 300

uwmam ,

BT SRTTINOY TEEA 0 DG BaLhRyT

A S A A N A S AR N NI A A AN A A S A N S S A MO LA A A A S N N AR LML AD A AN TG A A W A A S AR O MM A A A N S T A ML AR AL B A A A A N S A A S8 A MMM 8 08

Tamppovsuesela L313ue pus

ws Bwd RIBS
aedTeyen s anw

o1 wE

rdang wmy

Indut 8BS

pE- T

Mwﬁ,mﬁvmﬂm £ ;Mmaw DA PRRT AEn
IYre pay ordau
STTECyRIY SEEeY

Paae)

US 11,222,156 B2

Sheet 27 of 30

Jan. 11, 2022

LTOM

{{ 20478047 a1e1S ‘D047 91L1S IXBU ‘T-)O414 13STY

(0947804 93015 D047 9IRS XU JSYILNNOD 1V LIS

‘(004 8o 93e1s 094 911 POU ‘TIHILINNOD 13SIY

‘(094 8oJ 91e1s D9d 23RS RU)I T 31gvsIa

‘(094 8au 91e1s Dad 93RS Ixau ‘T, ‘(0)indul ws ‘g ‘uonysuesy feudis) NOILDY
{(0a4 8au 91e1s Das B3RS 1xau ‘T, (0)indul ws ‘g QuaAl 94l jeuSBIS) NOILDY
{(0a4 8o47 9)L)Ss VAU DIRIS IXAU T- ‘0 WUSAS B4lY) NOILDV

{(0947 8oy 21L1S D84 91R1S IXSU ‘T- ‘0 WA U0) J3151334) NOILDY
{(094 3347 91L1S DaJ 91eIS 1XaU (T)Sh ‘UNOD JBA0(|04) NOILDY
‘(0947 3au " 31e1S D047 B3RS P@U ‘T (T)Sh ‘T- ‘uolusuesl) NOILDY
‘(004" BaJ @1e3s 204 B3E3S IXBU ‘(0)INdul WS ‘T)SIDHAT ONITIVA YOLINOW
‘(024 ‘Bau 21e3s DaJ 23RS IXBU (p)andul WS ‘0)SIDHAT ONISIH YO LINOW

(094 Ba4 @3e3s 994 2381 XU ‘T- ‘FZOT ‘Apeas 21M Oy HYS L TOTOTT, ‘WS S VIVA 0414 3LIEYM

{(024 8o 91L15 D94 91R1S 1X3U ‘T- ‘PTOT ‘WS SHIVIVA L4M4 avIy

‘(Apeas peas oy HYS D84 847 91e1s D84 93RS IXaU ‘T- ‘pZOT ‘WS SMIWVLVA 0414 avIy
‘(oo47 834 21e3s ‘Bau " @1e1S 1XBU ‘T- ‘PZOT {XIANI INVHVd XIANI AVHYY HYILNNOD JHNOIINOD

U.S. Patent

‘(33478347 31L1S D847 9IRS IX3U ‘0000, ‘O)TANNYHD TOYLNOD LDINNOD

US 11,222,156 B2

Sheet 28 of 30

Jan. 11, 2022

U.S. Patent

8¢ O

T =!{eunijeu : 49||0L3U0D B3A JURISUOD
‘0 = jednieu : ayuds JULRISUOD

34d'D)d~S43Q™ YISN Ut paulyap sueIsuo)

‘(Apeas peas 041 YHS a4 3347 9181 a4 93elS IXaU ‘TI- ‘pzOT ‘Quds)vViva 044 aviy
‘(0247 Bau"91e)s 2947 91e)S 1XOU ‘T- ‘pZOT ‘ApESS 9MIM 04l YYUS TOTOTT, “491j0u0d €3A) VIiVA 0414 3LIYM
‘(0347804793835 9847 91e3S IXBU /0000, ‘0)1INNVHI TOYINOD LDINNOD

U.S. Patent Jan. 11, 2022

library IEEE,

user IEEE.STD_LOGIC_1164.all;
use ieee.numeric_std.all;
package USER_DEFS_PKG is

Sheet 29 of 30 US 11,222,156 B2

constant SYS_CLOCK

constant RESET_POLARITY

constant NUM_STATE_MACHINES
constant NUM_EVENTS

constant NUM_CONTROL_BITS
constant NUM_SIGNAL_TRANSITIONS
constant NUM_VIRTUAL_PORT_WIDTH

: natural := 50000000;
:std_logic = "1";

: natural == 3;
:natural :=0;
:natural := 32;
:integer :=0;
;integer :=-1;

-- one could make

constant NUM_CLOCK_DOMAINS

: positive = 1;

type CLOCK_ARRAY_TYPE is array {0 to NUM_CLOCK_DOMAINS -1) of natural;
constant SM_CLOCK_ARRAY : CLOCK_ARRAY_TYPE := {50000000, others => 0};

constant sprite : natural = 0;
constant vga_controller : natural := 1;

subtype COUNT _INTEGER is natural range 0 to 50000000;
subtype DIVIDE_INTEGER is integer range -1 to 40;
subtype DELAY_INTEGER is integer range -1 to 52096;

FI1G. 29

U.S. Patent Jan. 11, 2022 Sheet 30 of 30 US 11,222,156 B2

CONNECT_CONTROL_CHANNEL(O, "0000", next_state_rec, state_reg_rec);
CONFIGURE_COUNTER({_ARRAY_INDEX_PARAM_INDEX}, 1024, -1,
next_state_rec ,state_reg_rec);

READ_FIFO_DATA(this_sm, 1024, -1, next_state_rec, state_reg_rec,
SRR.fifo_read_ready);

READ_FWFT_DATA(this_sm, 1024, -1, next_state_rec, state_reg_rec);
WRITE_FIFO_DATA (this_sm, "110101", SRR.fifo_write_ready, 1024, -1,
next_state_rec, state_reg_rec);

MONITOR_RISING_EDGES(0, sm_input(0), next_state_rec, state_reg_rec);
MONITOR_FALLING_EDGES(1, sm_input(0), next_state_rec, state_reg_rec);
ACTION (transition, -1, us(1), 1, next_state_rec, state_reg_rec);

ACTION (rollover_count, us(1), 1, next_state_rec, state_reg_rec);

ACTION (register_for_event, 0, -1, next_state_rec, state_reg_rec);

ACTION (fire_event, 0, -1, next_state_rec, state_reg_rec);

ACTION (signal_fire_event, 0, sm_input(0),'1', next_state_rec, state_reg_rec);
ACTION (signal_transition, 0, sm_input(0),'1', next_state_rec, state_reg_rec);
DISABLE_FILE(next_state_rec ,state_reg_rec);

RESET_COUNTER(1, next_state_rec, state_reg_rec);

RESET_ALL COUNTERS(next_state_rec, state_reg_rec);

RESET FIFO(-1, next_state rec, state_reg rec);

FIG. 30

US 11,222,156 B2

1
METHODS AND SYSTEMS FOR
FACILITATING DESIGNING A
PROGRAMMABLE LOGIC DEVICE

The current application claims a priority to the U.S.
Provisional Patent application Ser. No. 62/906,570 filed on
Sep. 26, 2019. The current application is filed on Sep. 28,
2020, whereas Sep. 26, 2020 and Sep. 27, 2020 were on a
weekend.

TECHNICAL FIELD

Generally, the present disclosure relates to the field of data
processing. More specifically, the present disclosure relates
to methods and systems for facilitating designing a program-
mable logic device.

BACKGROUND

The traditional approach for designing a Programmable
Logic Device (PLD) or field-programmable gate array
(FPGA) using a hardware description language (HDL) may
require a design architecture that may be hierarchical in
nature. Further, a top-level module in the hierarchical archi-
tecture of the PLD may be put together with multiple
lower-level modules. Further, the multiple lower-level mod-
ules may be used as components that may perform some
sub-functionality of the top-level module. Further, each
lower-level module may also be hierarchical in nature.
Further, the hierarchical design architecture in HDL design
may use component instantiation of a lower-level module as
its primary method of code reuse. Further, each sub-module
of a plurality of sub-modules in the hierarchal design
architecture may have a port interface describing the signals
that may be exposed to the outside of each sub-module.
Further, the hierarchical design architecture may allow the
port interface of each sub-module to be different from
another sub-module. Further, the HDL programmer that
codes in the HDL may have the freedom of choosing the
names and types of the signals expose at the port interface.
Further, the freedom of choosing the signals that may appear
at the port interface may make for an ad-hoc coding style
and may negatively impact productivity, readability, main-
tainability, and testability. Further, the lack of a standard port
interface at any level in a hierarchical design architecture
may prevent easy integration, addition, removal, or testing
of a lower level module due to differences in the port
interface.

Newer methods for designing a PLD or FPGA may utilize
High-Level Synthesis (HLS) tools or may utilize graphical
programming approaches. Further, HLS tools or graphical
programming approaches for designing a PLD or FPGA may
require a source to source compiler for converting from a
high-level language or a graphical representation to a HDL
such as VHDL or Verilog. Further, HLS tools may convert
source code from written in C/C++ programming language
into HDL code which then can be synthesized into an FPGA.
Further, graphical programming approaches may convert
graphical descriptions of FPGA circuits into HDL code
which then can be synthesized into an FPGA. Further, HL.S
tools or graphical approaches to designing an FPGA that
utilize source to source compilers may be vendor-specific.
Further, HLS tools or graphical approaches to designing
FPGA from one vendor may not have the ability to target
other vendor’s FPGA devices. Further, HL.S or graphical
programming approaches may not have the ability to gen-
erate HDL code that can target older FPGA devices that were

10

15

20

25

30

35

40

45

50

55

60

65

2

in use before the tool was created. Further, the source code
for the HLS tool or graphical approach source code is not
written in a native HDL language such as VHDL or Verilog.
Further, source code that is not written in a native HDL
language may not be portable to different FPGA vendor
devices. Further, source code that is not written in a native
HDL language may not have the ability to target older FPGA
devices.

Therefore, there is a need for improved methods and
systems for facilitating designing a programmable logic
device that may overcome one or more of the above-
mentioned problems and/or limitations. There is a need for
an improved design method that is written in a native HDL
and that adds some standardization of port interfaces. There
is a need for an improved design method that increases
productivity by adding an additional form of code reuse at
the architectural level in addition to the component instan-
tiation form of code used by traditional hierarchical archi-
tectures. There is a need for a design method that is not
vendor-specific and possesses the capability of targeting
both older and newer FPGA devices.

BRIEF SUMMARY

This summary is provided to introduce a selection of
concepts in a simplified form, that are further described
below in the Detailed Description. This summary is not
intended to identify key features or essential features of the
claimed subject matter. Nor is this summary intended to be
used to limit the claimed subject matter’s scope.

Disclosed herein is a method of designing a program-
mable logic device (PLD), in accordance with some embodi-
ments. Accordingly, the method may include a step of
transmitting, using a communication device, a plurality of
module indications corresponding to a plurality of applica-
tion modules to a client device. Further, the method may
include a step of receiving, using a communication device,
a Hardware Description Language (HDL) code expressing a
design of the PLD from the client device. Further, the
method may include a step of analyzing, using a processing
device, the HDL code. Further, the method may include a
step of retrieving, using a storage device, the at least one
application module and the framework module correspond-
ing to the at least one API call based on the analyzing of the
HDL code. Further, the method may include a step of
instantiating, using the processing device, the framework
module and the at least one application module based on the
retrieving. Further, the method may include a step of con-
figuring, using the processing device, each of the plurality of
common synchronous logic components and the intercon-
nect infrastructure based on the at least one API call. Further,
the method may include a step of generating, using the
processing device, a flat framework circuit data correspond-
ing to the PLD based on the instantiating and the configur-
ing. Further, the method may include a step of transmitting,
using the communication device, the flat framework circuit
data to the client device.

Further disclosed herein a non-transitory computer-read-
able medium having stored thereon Hardware Description
Language (HDL) code corresponding to a plurality of appli-
cation modules corresponding to a plurality of applications
for facilitating designing of a programmable logic device
(PLD), in accordance with some embodiments. Further, each
application module of the plurality of application modules
may include a standard port interface. Further, the plurality
of application modules may be configured to facilitate
designing of the PLD utilizing a non-hierarchical architec-

US 11,222,156 B2

3

ture may include a framework module and the plurality of
application modules. Further, the framework module may
include a plurality of common synchronous logic compo-
nents shared by the plurality of application modules through
the standard port interface.

Both the foregoing summary and the following detailed
description provide examples and are explanatory only.
Accordingly, the foregoing summary and the following
detailed description should not be considered to be restric-
tive. Further, features or variations may be provided in
addition to those set forth herein. For example, embodiments
may be directed to various feature combinations and sub-
combinations described in the detailed description.

BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this disclosure, illustrate various
embodiments of the present disclosure. The drawings con-
tain representations of various trademarks and copyrights
owned by the Applicants. In addition, the drawings may
contain other marks owned by third parties and are being
used for illustrative purposes only. All rights to various
trademarks and copyrights represented herein, except those
belonging to their respective owners, are vested in and the
property of the applicants. The applicants retain and reserve
all rights in their trademarks and copyrights included herein,
and grant permission to reproduce the material only in
connection with reproduction of the granted patent and for
no other purpose.

Furthermore, the drawings may contain text or captions
that may explain certain embodiments of the present disclo-
sure. This text is included for illustrative, non-limiting,
explanatory purposes of certain embodiments detailed in the
present disclosure.

FIG. 1 is an illustration of an online platform consistent
with various embodiments of the present disclosure.

FIG. 2 is a flowchart of a method of designing a pro-
grammable logic device (PLD), in accordance with some
embodiments.

FIG. 3 is a block diagram of a system for facilitating
designing a programmable logic device (PLD), in accor-
dance with some embodiments.

FIG. 4 is a flowchart of a method to facilitate generation
of a flat framework circuit based on a flat design architec-
ture, in accordance with some embodiments.

FIG. 5 is a schematic representation of a flat design
architecture of a programmable logic device (PLD), in
accordance with some embodiments.

FIG. 6 is a schematic representation of the state machine
of the framework module, in accordance with some embodi-
ments.

FIG. 7 is a schematic representation of the counter circuit
of the framework module, in accordance with some embodi-
ments.

FIG. 8 is a schematic representation of the edge detection
circuit of the framework module, in accordance with some
embodiments.

FIG. 9 is a schematic representation of the FIFO of the
framework module, in accordance with some embodiments.

FIG. 10 is a schematic representation of a flat framework
chain configuration of the flat design architecture of the
programmable logic device (PLD), in accordance with some
embodiments.

15

25

40

45

55

60

4

FIG. 11 is a schematic representation of a flat framework
peer to peer configuration of the flat design architecture of
the programmable logic device (PLD), in accordance with
some embodiments.

FIG. 12 is a schematic representation of a flat framework
self-loop back configuration of the flat design architecture of
the programmable logic device (PLD), in accordance with
some embodiments.

FIG. 13 is a block diagram of a computing device for
implementing the methods disclosed herein, in accordance
with some embodiments.

FIG. 14 is an illustration of a code for facilitating instan-
tiation of common components and a framework module, in
accordance with some embodiments.

FIG. 15 is an illustration of a code of a port interface of
an application module, in accordance with some embodi-
ments.

FIG. 16 is an illustration of a code of an application
module, in accordance with some embodiments.

FIG. 17 is an illustration of a code of the application
module, in accordance with some embodiments.

FIG. 18 is an illustration of a simulation of the code of the
application module, in accordance with some embodiments.

FIG. 19 is an illustration of a traditional hierarchal archi-
tecture of a programmable logic device (PLD).

FIG. 20 is an illustration of a novel flat architecture of a
programmable logic device (PLD), in accordance with some
embodiments.

FIG. 21 is a schematic representation of a system for
facilitating loop testing of the PLD, in accordance with some
embodiments.

FIG. 22 is an illustration of the novel flat architecture of
the programmable logic device (PLD) without the at least
one framework module, in accordance with some embodi-
ments.

FIG. 23 is an illustration of the novel flat architecture of
the programmable logic device (PLD), in accordance with
some embodiments.

FIG. 24 is an illustration of the novel flat architecture of
the programmable logic device (PLD), in accordance with
some embodiments.

FIG. 25 is a schematic representation of a register, in
accordance with some embodiments.

FIG. 26 is an illustration of a code of a fixed port interface
of an application module, in accordance with some embodi-
ments.

FIG. 27 is an illustration of a code of an API (application
programming interface) call, in accordance with some
embodiments.

FIG. 28 is an illustration of a code of the API (application
programming interface) call, in accordance with some
embodiments.

FIG. 29 is an illustration of a code of a package file, in
accordance with some embodiments.

FIG. 30 is an illustration of a code of an API (application
programming interface) call, in accordance with some
embodiments.

DETAILED DESCRIPTION

As a preliminary matter, it will readily be understood by
one having ordinary skill in the relevant art that the present
disclosure has broad utility and application. As should be
understood, any embodiment may incorporate only one or a
plurality of the above-disclosed aspects of the disclosure and
may further incorporate only one or a plurality of the
above-disclosed features. Furthermore, any embodiment

US 11,222,156 B2

5

discussed and identified as being “preferred” is considered
to be part of a best mode contemplated for carrying out the
embodiments of the present disclosure. Other embodiments
also may be discussed for additional illustrative purposes in
providing a full and enabling disclosure. Moreover, many
embodiments, such as adaptations, variations, modifications,
and equivalent arrangements, will be implicitly disclosed by
the embodiments described herein and fall within the scope
of the present disclosure.

Accordingly, while embodiments are described herein in
detail in relation to one or more embodiments, it is to be
understood that this disclosure is illustrative and exemplary
of the present disclosure, and are made merely for the
purposes of providing a full and enabling disclosure. The
detailed disclosure herein of one or more embodiments is
not intended, nor is to be construed, to limit the scope of
patent protection afforded in any claim of a patent issuing
here from, which scope is to be defined by the claims and the
equivalents thereof. It is not intended that the scope of patent
protection be defined by reading into any claim limitation
found herein and/or issuing here from that does not explic-
itly appear in the claim itself.

Thus, for example, any sequence(s) and/or temporal order
of steps of various processes or methods that are described
herein are illustrative and not restrictive. Accordingly, it
should be understood that, although steps of various pro-
cesses or methods may be shown and described as being in
a sequence or temporal order, the steps of any such processes
or methods are not limited to being carried out in any
particular sequence or order, absent an indication otherwise.
Indeed, the steps in such processes or methods generally
may be carried out in various different sequences and orders
while still falling within the scope of the present disclosure.
Accordingly, it is intended that the scope of patent protection
is to be defined by the issued claim(s) rather than the
description set forth herein.

Additionally, it is important to note that each term used
herein refers to that which an ordinary artisan would under-
stand such term to mean based on the contextual use of such
term herein. To the extent that the meaning of a term used
herein—as understood by the ordinary artisan based on the
contextual use of such term—differs in any way from any
particular dictionary definition of such term, it is intended
that the meaning of the term as understood by the ordinary
artisan should prevail.

Furthermore, it is important to note that, as used herein,
“a” and “an” each generally denotes “at least one,” but does
not exclude a plurality unless the contextual use dictates
otherwise. When used herein to join a list of items, “or”
denotes “at least one of the items,” but does not exclude a
plurality of items of the list. Finally, when used herein to join
a list of items, “and” denotes “all of the items of the list.”

The following detailed description refers to the accom-
panying drawings. Wherever possible, the same reference
numbers are used in the drawings and the following descrip-
tion to refer to the same or similar elements. While many
embodiments of the disclosure may be described, modifi-
cations, adaptations, and other implementations are possible.
For example, substitutions, additions, or modifications may
be made to the elements illustrated in the drawings, and the
methods described herein may be modified by substituting,
reordering, or adding stages to the disclosed methods.
Accordingly, the following detailed description does not
limit the disclosure. Instead, the proper scope of the disclo-
sure is defined by the claims found herein and/or issuing
here from. The present disclosure contains headers. It should

10

15

20

25

30

35

40

45

50

55

60

65

6

be understood that these headers are used as references and
are not to be construed as limiting upon the subjected matter
disclosed under the header.

The present disclosure includes many aspects and fea-
tures. Moreover, while many aspects and features relate to,
and are described in the context of methods and systems for
facilitating designing a programmable logic device embodi-
ments of the present disclosure are not limited to use only in
this context.

In general, the method disclosed herein may be performed
by one or more computing devices. For example, in some
embodiments, the method may be performed by a server
computer in communication with one or more client devices
over a communication network such as, for example, the
Internet. In some other embodiments, the method may be
performed by one or more of at least one server computer,
at least one client device, at least one network device, at least
one sensor, and at least one actuator. Examples of the one or
more client devices and/or the server computer may include,
a desktop computer, a laptop computer, a tablet computer, a
personal digital assistant, a portable electronic device, a
wearable computer, a smartphone, an Internet of Things
(IoT) device, a smart electrical appliance, a video game
console, a rack server, a super-computer, a mainframe com-
puter, mini-computer, micro-computer, a storage server, an
application server (e.g. a mail server, a web server, a
real-time communication server, an FTP server, a virtual
server, a proxy server, a DNS server, etc.), a quantum
computer, and so on. Further, one or more client devices
and/or the server computer may be configured for executing
a software application such as, for example, but not limited
to, an operating system (e.g. Windows, Mac OS, Unix,
Linux, Android, etc.) in order to provide a user interface
(e.g. GUI, touch-screen based interface, voice-based inter-
face, gesture-based interface, etc.) for use by the one or more
users and/or a network interface for communicating with
other devices over a communication network. Accordingly,
the server computer may include a processing device con-
figured for performing data processing tasks such as, for
example, but not limited to, analyzing, identifying, deter-
mining, generating, transforming, calculating, computing,
compressing, decompressing, encrypting, decrypting,
scrambling, splitting, merging, interpolating, extrapolating,
redacting, anonymizing, encoding and decoding. Further,
the server computer may include a communication device
configured for communicating with one or more external
devices. The one or more external devices may include, for
example, but are not limited to, a client device, a third-party
database, a public database, a private database, and so on.
Further, the communication device may be configured for
communicating with the one or more external devices over
one or more communication channels. Further, the one or
more communication channels may include a wireless com-
munication channel and/or a wired communication channel.
Accordingly, the communication device may be configured
for performing one or more of transmitting and receiving of
information in electronic form. Further, the server computer
may include a storage device configured for performing data
storage and/or data retrieval operations. In general, the
storage device may be configured for providing reliable
storage of digital information. Accordingly, in some embodi-
ments, the storage device may be based on technologies such
as, but not limited to, data compression, data backup, data
redundancy, deduplication, error correction, data finger-
printing, role-based access control, and so on.

Further, one or more steps of the method disclosed herein
may be initiated, maintained, controlled, and/or terminated

US 11,222,156 B2

7

based on a control input received from one or more devices
operated by one or more users such as, for example, but not
limited to, an end-user, an admin, a service provider, a
service consumer, an agent, a broker and a representative
thereof. Further, the user as defined herein may refer to a
human, an animal or an artificially intelligent being in any
state of existence, unless stated otherwise, elsewhere in the
present disclosure. Further, in some embodiments, the one or
more users may be required to successfully perform authen-
tication in order for the control input to be effective. In
general, a user of the one or more users may perform
authentication based on the possession of a secret human-
readable secret data (e.g. username, password, passphrase,
PIN, secret question, secret answer, etc.) and/or possession
of a machine-readable secret data (e.g. encryption key,
decryption key, bar codes, etc.) and/or or possession of one
or more embodied characteristics unique to the user (e.g.
biometric variables such as but not limited to, fingerprint,
palm-print, voice characteristics, behavioral characteristics,
facial features, iris pattern, heart rate variability, evoked
potentials, brain waves, and so on) and/or possession of a
unique device (e.g. a device with a unique physical and/or
chemical and/or biological characteristic, a hardware device
with a unique serial number, a network device with a unique
IP/MAC address, a telephone with a unique phone number,
a smartcard with an authentication token stored thereupon,
etc.). Accordingly, the one or more steps of the method may
include communicating (e.g. transmitting and/or receiving)
with one or more sensor devices and/or one or more actua-
tors in order to perform authentication. For example, the one
or more steps may include receiving, using the communi-
cation device, the secret human-readable data from an input
device such as, for example, a keyboard, a keypad, a
touch-screen, a microphone, a camera, and so on. Likewise,
the one or more steps may include receiving, using the
communication device, the one or more embodied charac-
teristics from one or more biometric sensors.

Further, one or more steps of the method may be auto-
matically initiated, maintained, and/or terminated based on
one or more predefined conditions. In an instance, the one or
more predefined conditions may be based on one or more
contextual variables. In general, the one or more contextual
variables may represent a condition relevant to the perfor-
mance of the one or more steps of the method. The one or
more contextual variables may include, for example, but are
not limited to, location, time, identity of a user associated
with a device (e.g. the server computer, a client device, etc.)
corresponding to the performance of the one or more steps,
environmental variables (e.g. temperature, humidity, pres-
sure, wind speed, lighting, sound, etc.) associated with a
device corresponding to the performance of the one or more
steps, physical state and/or physiological state and/or psy-
chological state of the user, physical state (e.g. motion,
direction of motion, orientation, speed, velocity, accelera-
tion, trajectory, etc.) of the device corresponding to the
performance of the one or more steps and/or semantic
content of data associated with the one or more users.
Accordingly, the one or more steps may include communi-
cating with one or more sensors and/or one or more actuators
associated with the one or more contextual variables. For
example, the one or more sensors may include, but are not
limited to, a timing device (e.g. a real-time clock), a location
sensor (e.g. a GPS receiver, a GLONASS receiver, an indoor
location sensor, etc.), a biometric sensor (e.g. a fingerprint
sensor), an environmental variable sensor (e.g. temperature
sensor, humidity sensor, pressure sensor, etc.) and a device
state sensor (e.g. a power sensor, a voltage/current sensor, a

10

15

20

25

30

35

40

45

50

55

60

65

8

switch-state sensor, a usage sensor, etc. associated with the
device corresponding to performance of the or more steps).

Further, the one or more steps of the method may be
performed one or more number of times. Additionally, the
one or more steps may be performed in any order other than
as exemplarily disclosed herein, unless explicitly stated
otherwise, elsewhere in the present disclosure. Further, two
or more steps of the one or more steps may, in some
embodiments, be simultaneously performed, at least in part.
Further, in some embodiments, there may be one or more
time gaps between performance of any two steps of the one
or more steps.

Further, in some embodiments, the one or more pre-
defined conditions may be specified by the one or more
users. Accordingly, the one or more steps may include
receiving, using the communication device, the one or more
predefined conditions from one or more and devices oper-
ated by the one or more users. Further, the one or more
predefined conditions may be stored in the storage device.
Alternatively, and/or additionally, in some embodiments, the
one or more predefined conditions may be automatically
determined, using the processing device, based on historical
data corresponding to performance of the one or more steps.
For example, the historical data may be collected, using the
storage device, from a plurality of instances of performance
of the method. Such historical data may include perfor-
mance actions (e.g. initiating, maintaining, interrupting,
terminating, etc.) of the one or more steps and/or the one or
more contextual variables associated therewith. Further,
machine learning may be performed on the historical data in
order to determine the one or more predefined conditions.
For instance, machine learning on the historical data may
determine a correlation between one or more contextual
variables and performance of the one or more steps of the
method. Accordingly, the one or more predefined conditions
may be generated, using the processing device, based on the
correlation.

Further, one or more steps of the method may be per-
formed at one or more spatial locations. For instance, the
method may be performed by a plurality of devices inter-
connected through a communication network. Accordingly,
in an example, one or more steps of the method may be
performed by a server computer. Similarly, one or more
steps of the method may be performed by a client computer.
Likewise, one or more steps of the method may be per-
formed by an intermediate entity such as, for example, a
proxy server. For instance, one or more steps of the method
may be performed in a distributed fashion across the plu-
rality of devices in order to meet one or more objectives. For
example, one objective may be to provide load balancing
between two or more devices. Another objective may be to
restrict a location of one or more of an input data, an output
data and any intermediate data therebetween corresponding
to one or more steps of the method. For example, in a
client-server environment, sensitive data corresponding to a
user may not be allowed to be transmitted to the server
computer. Accordingly, one or more steps of the method
operating on the sensitive data and/or a derivative thereof
may be performed at the client device.

Overview:

The present disclosure describes methods and systems for
facilitating designing a programmable logic device (PLD) or
an FPGA. Further, the present disclosure describes a use of
a novel synthesizable design pattern based on a flat design
architecture written in a native HDL language. Further, the
design pattern increases productivity by standardizing the
interface between the constituent components in the design

US 11,222,156 B2

9

pattern and by introducing a newer form of code reuse at the
architectural level. Further, the design pattern increases
productivity when designing an FPGA compared to tradi-
tional HDL design methods by raising the level of abstrac-
tion from the Register Transter Level (RTL) to a procedural
programming level by use of an Application Programming
Interface (API) of overloaded procedure calls. Further, the
design pattern borrows concepts that have worked extremely
well in the software industry, such as interfaces, API calls,
shared libraries, static polymorphism, and brings an analog
of'those concepts to the hardware world in a manner suitable
for synthesis into an FPGA, as shown in FIG. 19 and FIG.
20. Further, the overall goals of the design pattern are to
increase the productivity of FPGA design by reducing
development time at both the module level and system level,
ease the learning curve of traditional HDL programming,
and provide a workflow that is familiar to a transitioning
software developer wishing to design a FPGA.

Further, a flat design architecture used by the novel design
pattern differs significantly from the traditional hierarchical
design architecture in both physical structure and in how a
FPGA application is developed, as shown in FIG. 19 and
FIG. 20. Further, the design pattern is structured as a
plurality of application modules logically connected through
a framework module, as shown in FIG. 20. Further, the
design pattern standardizes the port interfaces of at least one
application module located one layer below the top-level
module. Further, the design pattern may utilize a shared
framework module to provide an opportunity for code reuse
of synchronous logic components at the architectural level
and also may provide a means for logical interconnection
between the plurality of application modules.

Further, an application module in the design pattern may
be described as a VHDL entity that may be located in at least
one-level under the top-level module that may implement a
fixed port interface, as shown in FIG. 26. Further, the fixed
port interface of the application module may consist of at
least one VHDL generic integer index and may consist of
seven interface signals. Further, the seven interface signals
may be described as:

(a) A system clock: clk

(b) A system reset: reset

(c) An input vector: sm_input

(d) An output vector: sm_output

(e) An input output vector: sm_io

() An output of next state logic: next_state_rec

(g) An input of state registered logic: state_reg_rec

Further, the sm_input, the sm_input, and the sm_io sig-
nals, in an instance, are routed directly to the top-level
module in the design pattern. Further, the sm_input, the
sm_input, and the sm_io signals, in an instance, are not
routed to another application module in the design pattern.
Further, the sm_input, the sm_input, and the sm_io signals
may be destined directly for FPGA I/O pins, as shown in
FIG. 22, in the design pattern. Further, this differs from the
traditional hierarchical approach to I/O of a module where
inputs and outputs from a component may be destined to
other components with the use of user-defined signals in an
ad-hoc fashion. Further, in order to provide standardization
in connection of application modules, at least two auxiliary
signals, such as next_state_rec, and state_reg_rec may be
routed to and from the framework module. Further, the
next_state_rec, and state_reg_rec, signals may include an
abstract array of record type and may carry the desired
configuration and current configuration information of the
application modules that may be utilized on at least one API
call, as shown in FIG. 27. Further, the desired configuration

40

45

50

10

information may reference the next state logic of the gen-
eralized state machine, and the current configuration infor-
mation may reference the state registered logic of the
generalized state machine.

Further, constraining the port interface of at least one
application module to be fixed and identical to at least one
other application module has several important conse-
quences. The constraint amongst other things:

(a) Enforces the use of the API calls for application
module-to-application module interconnection through
the framework module.

(b) Encourages application modules to use the synchro-
nous logic resources available from the framework
instead of manually coding these common components.

() Enhances readability of the VHDL code by promoting
the use of the same procedure calls in every application
module

(d) Allows for ease of integration, addition, removal, or
testing of application modules at the top-level.

Further, a framework module in the design pattern may be
described as a VHDL entity operating on the same clock
domain and sharing the same reset signal with at least one
application module, as shown in FIG. 23. Further, a plurality
of framework modules is connected to at least one applica-
tion module. Further, the plurality of framework modules
may be operating based on a plurality of clock domains.
Further, the plurality of clock domains may be dissimilar, as
shown in FIG. 24. Further, one purpose of the framework
module may be to implement an array of synchronous logic
resources that may be requested by at least one application
module by utilizing at least one API call to the framework
module, as shown in FIG. 27. Further, the synchronous logic
resources that may be implemented by the at least one
framework module may include at least one state machine,
edge detection circuit, counter, FIFO, shared control regis-
ter, memory, and an event broadcasting mechanism, etc.
Further, the interface to the at least one framework module
may be of abstract signal type. Further, the interface to the
framework may be an array of next_state_rec of nsr_array
type and an array of state_reg_rec of srr_array type that may
connect to the next_state_rec and state_reg_rec of the appli-
cation modules. Further, each application module may
receive a subarray of the next_state_rec and state_reg_rec
from the framework module that may be indexed to utilize
an array of resources from the framework. Further, a single
framework module may be shared by a plurality of appli-
cation modules. Further, by use of a shared framework
module, the flat design architecture introduces a newer form
of code reuse at the architectural level that does not exist
with the traditional hierarchical design architecture, as
shown in FIG. 19 and FIG. 20.

Further, another purpose of a framework module may be
to provide logical interconnection between a plurality appli-
cation modules. Further, a logical connection between a
plurality of application modules that may be made through
the at least one framework module by the use of at least one
API procedure call and may pass a constant integer value, as
shown in FIG. 28. Further, a connection between a plurality
of application modules may only require at least one API call
to pass data to and from at least one first application module
to at least one second application module through the
framework module. Further, in order for the at least one first
application module to identify at least one second applica-
tion module to read from or write data to, at least one
constant integer may be defined in the
USER_DEFS_PKG.vhd that may mirror the same identifier
as the entity name of the module that may be referenced, as

US 11,222,156 B2

11

shown in FIG. 29. Further, when a programmer uses an API
call such READ_FIFO_DATA(. .) or WRITE_
FIFO_DATA(. . .), to communicate between at least one
first application module to at least one second application
module, it may appear to the programmer that the API call
is referencing the other application module by name. How-
ever, what really may happen is that the constant integer that
may mirror the entity name of the other application module
which may be defined in USER_DEFS_PKG.vhd may be
used to index into the array of next_state_rec logic that may
be routed to the at least one framework module. Further, the
notion of logical interconnection between the plurality of
application modules may be a much more flexible concept
than wired interconnection using signal assignments in a
traditional hierarchical design, as shown in FIG. 19 and FIG.
20. Further, at least one framework module may include a
communication channel that may consist of a control reg-
ister, a data register, a FIFO, a shared memory, etc. Further,
in order for a user to change the type of logical intercon-
nection between the plurality of application modules by use
of the design pattern, the user may only need to change at
least one API call in at least one of the plurality of appli-
cation modules, as shown in FIG. 27 and FIG. 28. Further,
in order to change the actual application modules that may
be connected on the same type of communication channel,
the user may need to change a single integer value that may
be passed to the at least one API call, as shown in FIG. 27
and FIG. 28.

Further, the notion of the logical interconnection of the
plurality of application modules through at least one frame-
work model differs significantly from the traditional way in
which the components are connected in a hierarchical design
architecture. Further, in the traditional hierarchical design
architecture, the connection of a plurality of components
may require additional user defined signals to be defined in
order to connect to the port interface of at least one com-
ponent to the port of at least one other component (as shown
in FIG. 19 and FIG. 20). Further, with the novel design
pattern, the connection of at least one application module
may only require either a change of an at least one API call
or a change of an integer parameter passed to at least one
API call. Further, the application modules usage of the at
least one framework may be a transparent process by the use
at least one API call. Further, ease of logical interconnect
through the at least one framework module or by use of an
API call with an integer parameter may be possible only
because the novel design pattern that implements a flat
architecture. Further, with a flat architecture, the logical
interconnection of at least one application module may only
require a constant integer index because the at least one
application module may be known to reside at a location at
least one level under the top-level module. Further, without
the flat architecture, logical indexing may become signifi-
cantly more complex because signals may need to be defined
and may need to be routed to an arbitrary level in a design
hierarchy. Further, the use of logical interconnection using a
flat design architecture significantly enhances productivity
by speeding up development time when connecting at least
one application module as compared to the traditional meth-
ods of connecting components in a hierarchical design
architecture.

Further, the at least one framework module may be
implemented as a generalized array of state machines.
Further, the synchronous logic components may be treated
as state machines. Further, the differences in the function-
ality of the synchronous logic components lie in the differ-
ence of the contents of the next state logic functions. Further,

25

30

40

45

12

counters, FIFOs, edge detection circuits, and even simple
registers are indeed all state machines as shown in FIG. 6,
FIG. 7, FIG. 8, FIG. 9, and FIG. 25. Further, the synchro-
nous components including memories, shift registers, etc,
may also be implemented as generalized state machines.
Further, the choice to implement the framework module as
a generalized array of state machines has several strategic
advantages, such as:

(a) Providing a mechanism for uniform treatment of all
synchronous logic components when implemented
inside the at least one framework module.

(b) Providing for the same treatment for logical intercon-
nection of at least one application module as the
treatment of synchronous logic components.

(c¢) Only requiring the use of at least two abstract signal
types that are fixed at the port interface of the appli-
cation modules

(d) Providing a uniform calling structure for API calls
with at least two auxiliary abstract signals. Further, any
parameters before these two signals may be required,
and any signals appearing after these signals may be
optional.

(e) Providing for a way to add future functionality of
possibly more synchronous logic components or dif-
ferent logical ways of interconnection without breaking
any pre-existing code because the signal types may be
abstract.

Further, the at least one framework module may imple-
ment a control signal interface that may be utilized by a host
or embedded computer. Further, the host or embedded
computer may indirectly interface with any of the at least
one application module through the use of logical intercon-
nection provided by the at least one framework module.
Further, the host or embedded computer may facilitate
in-circuit testing and visualization of at least one state
machine data-path, as shown in FIG. 21.

Further, by design, there are several similarities in how
the novel design pattern is organized and how a software
application is developed. Further, in order to mimic public
interface files and shared libraries in the software world, the
design pattern may use two VHDL package files to expose
the API to a developer. Further, global constants that may be
needed to be shared across all application modules or
constants that may be needed to parameterize the at least one
framework module, may be defined in the
USER_DEFS_PKG.vhd. Further, in order to separate user
parametrization from the actual implementation of function-
ality, the implementation of the at least one framework
module and the implementation of the at least one API calls
may be located in SM_API_PKG.vhd package file, as shown
in FIG. 29. Further, the manner in which the at least one
application module may utilize an array of hardware
resources from a single framework module by use of API
calls is very similar to how multiple software applications
utilize a single shared library from a computer operating
system. Further, in a similar way that software applications
need not to statically compile binary code into each indi-
vidual application when using a shared library, with the
design pattern, synchronous logic resources that are used
from the shared framework module may not be synthesized
directly into at least one application module by a synthesis
tool.

Further, there is also a notable difference in the manner
that a software application uses a shared library and the way
the novel design pattern uses a shared framework module for
code reuse when synthesized to a FPGA. Further, with a
software shared library, the intent is that each software
application may share the exact same binary code of the

US 11,222,156 B2

13

shared library thus reducing the overall software footprint.
However, the intent of the novel design pattern is to create
synchronous logic resources that can be accessed from the at
least one application module and are suitable to be synthe-
sized into an FPGA. Further, this means that the VHDL code
that may exist in the SM_API_PKG.vhd may possibly be
shared when simulating the design. However, when imple-
mented in actual FPGA hardware, the at least one applica-
tion module may need to have access to its own individual
hardware resources. Thus, an array of hardware resources
may need to be implemented and one or more modules must
have the ability to index into the hardware array of resources
implemented inside the at least one framework module.
Further, a numerical index that may be used to index into the
hardware array of resources may be the VHDL generic
constant integer that may be required as part of the fixed port
interface of one or more application modules. Further, this
constant integer index may be defined in the
USER_DEFS_PKG.vhd file and may mirror the same name
of the at least one application module entity name for
convenience. Further, the naming convention of the constant
integer index may not be necessary. Further, a constant
integer may need to be defined before the HDL design is
simulated or synthesized.

Further, testing of an HDL design using the novel design
pattern using a flat architecture differs from the traditional
approach to testing of an HDL design using a traditional
hierarchical design architecture. Further, with the traditional
hierarchical design, it may be necessary for the developer to
write a custom testbench file to provide stimulus to a
component. Further, with the traditional testing of a hierar-
chical design, a test bench stimulus file may need to imple-
ment a port interface that matches the component that may
need to be tested. Further, with the novel design pattern, one
or more application modules may be required to have a fixed
port face that may be required to match one or more other
application modules. Further, testing may be done with the
same API as the one or more application modules use to
implement application-specific logic. Further, in order to
keep track of the number of clock cycles that have occurred,
timing functions may be part of the same API that is
implemented in the design pattern. Further, timing functions
may reference individual clock counts, microseconds, mil-
liseconds, seconds worth of time-units relative to the system
clock of the design. Further, the timing functions that may
be part of the API may take an integer or real data type as
a parameter. Further, the timing functions may return an
integer value which may be synthesizable.

Further, for a FPGA design of equal functionality, HDL
code written using the novel design pattern using a flat
architecture may require substantially fewer lines of HDL
code compared to an equivalent HDL design that does not
use the design pattern. Further, using the at least two
auxiliary signals, such as next_state_rec and state_reg_rec
of abstract type at the interface of the application module
may vastly reduce the number of signals that need to be
declared inside at least one application module, as shown in
FIG. 16 and FIG. 17. Further, HDL code written using the
novel design pattern using a flat architecture design pattern
may use significantly fewer process statements and signifi-
cantly less if-then-else statements then the corresponding
hierarchical design approach. Further, it may be common for
the design pattern to use just one process statement. Further,
the clock and reset signal may not need to be referenced
inside the process statement by at least one application
module, as shown in FIG. 16 and FIG. 17. Further, a
plurality of application modules may use a shared frame-

10

15

20

25

30

35

40

45

50

55

60

65

14

work module. Further, a shared framework module may
handle the clock and reset signal for a plurality of applica-
tion modules. Further, the use of the design pattern and may
have implications that positively impact productivity, read-
ability, maintainability, and testability compared to the tra-
ditional hierarchical approach. Further, the present disclo-
sure describes a novel design pattern with a flat design
architecture. Further, the design pattern may have a very
broad application space and may have the potential for usage
as a general HDL programming technique. Further, the
underlying flat architecture that is used to support the design
pattern may even be preferred over a traditional hierarchical
architecture when FPGA development is being done in an
agile development environment when system level specifi-
cations may be loosely defined and may be expected to
change. Further, at least one application module may have
direct access to the top-level port of the FPGA. Further,
because at least one application module may have direct
access to the top-level port of the FPGA, at least one
application module may not have a dependency on at least
one other application module. Further, if at least one appli-
cation module may not have a dependency on at least one
other application module, it may be easier to add or remove
functionality from an FPGA design without disturbing
another part of the FPGA design.

Further, the present disclosure may describe a method of
designing a programmable logic device (PLD) or Field
Programmable Gate Array (FPGA) based on a flat design
architecture. Further, the method introduces a novel synthe-
sizable design pattern written in a native Hardware Descrip-
tion Language HDL that standardizes port interfaces
between application modules and interconnects the applica-
tion modules using a shared framework module. The shared
framework module provides a logical interconnection
between the application modules and implements arrays of
synchronous logic resources that can be configured by the
application modules using an API of overloaded procedure
calls. Further, the use of standardized interfaces and API
level programming for designing the PLD or FPGA in the
native HDL language increases productivity by providing an
abstraction layer that is higher than the traditional Register
Transfer Level (RTL) and by introducing a newer form of
code reuse at the architectural level.

FIG. 1 is an illustration of an online platform 100 con-
sistent with various embodiments of the present disclosure.
By way of non-limiting example, the online platform 100 to
facilitate designing a programmable logic device may be
hosted on a centralized server 102, such as, for example, a
cloud computing service. The centralized server 102 may
communicate with other network entities, such as, for
example, a mobile device 106 (such as a smartphone, a
laptop, a tablet computer, etc.), other electronic devices 110
(such as desktop computers, server computers, etc.), and
databases 114 over a communication network 104, such as,
but not limited to, the Internet. Further, users of the online
platform 100 may include relevant parties such as, but not
limited to, end-users, administrators, clients, service provid-
ers, service consumers, and so on. Accordingly, in some
instances, electronic devices operated by the one or more
relevant parties may be in communication with the platform.

A user 112, such as the one or more relevant parties, may
access online platform 100 through a web-based software
application or browser. The web-based software application
may be embodied as, for example, but not be limited to, a
website, a web application, a desktop application, and a
mobile application compatible with a computing device
1300.

US 11,222,156 B2

15

FIG. 2 is a flowchart of a method 200 of designing a
programmable logic device (PLD), in accordance with some
embodiments. Further, at 202, the method 200 may include
a step of transmitting, using a communication device, a
plurality of module indications corresponding to a plurality
of application modules to a client device (such as the mobile
device 106, the electronic devices 110, etc.). Further, the
client device may include a computing device such as a
smartphone, a tablet, a desktop, a laptop, a smartwatch, and
so on. Further, the client device may be associated with at
least one client (such as the user 112). Further, the at least
one client may be an individual, an institution, an organi-
zation, etc.

Further, at 204, the method 200 may include a step of
receiving, using the communication device, a Hardware
Description Language (HDL) code expressing a design of
the PLD from the client device. Further, the HDL code may
be based on a non-hierarchical architecture may include a
framework module and a plurality of application modules.
Further, the HDL code may include at least one Application
Programming Interface (API) call corresponding to at least
one application module of the plurality of application mod-
ules. Further, the at least one API call may include at least
one module indication of the plurality of module indications.
Further, each application module of the plurality of appli-
cation modules may include a standard port interface. Fur-
ther, the framework module may include a plurality of
common synchronous logic components shared by the plu-
rality of application modules through the standard port
interface and an interconnect infrastructure configured to
interconnect the plurality of application modules.

Further, at 206, the method 200 may include a step of
analyzing, using a processing device, the HDL code.

Further, at 208, the method 200 may include a step of
retrieving, using a storage device, the at least one application
module and the framework module corresponding to the at
least one API call based on the analyzing of the HDL code.
Further, the at least one application module and the frame-
work module may be stored in at least one database (such as
the databases 114).

Further, at 210, the method 200 may include a step of
instantiating, using the processing device, the framework
module and the at least one application module based on the
retrieving.

Further, at 212, the method 200 may include a step of
configuring, using the processing device, each of the plu-
rality of common synchronous logic components and the
interconnect infrastructure based on the at least one API call.

Further, at 214, the method 200 may include a step of
generating, using the processing device, a flat framework
circuit data corresponding to the PLD based on the instan-
tiating and the configuring.

Further, at 216, the method 200 may include a step of
transmitting, using the communication device, the flat
framework circuit data to the client device.

Further, in some embodiments, the plurality of common
synchronous logic components may be configured by the
plurality of application modules through the standard port
interface.

Further, in some embodiments, the plurality of common
synchronous logic components may be configured by the
plurality of application modules using a low-level signal call
comprised in the HDL code.

Further, in some embodiments. Further, a first application
module of the plurality of application modules may be
configured to communicate with a second application mod-
ule of the plurality of application modules based on the

30

35

40

45

50

55

60

65

16

standard port interface through the at least one API call.
Further, in an embodiment, the first application module may
be configured to communicate with the second application
module without being intermediated by a third application
module of the plurality of application modules.

Further, in some embodiments, each application module
of the plurality of application modules may be configured to
handle off-chip Input/Output (I0) signals based on low-level
signal assignments comprised in the HDL code.

Further, in some embodiments, each application module
of the plurality of application modules may be configured to
directly access a top-level system port associated with the
PLD.

Further, in some embodiments, the standard port interface
may include an output signal interface and an input signal
interface. Further, the output signal interface may be con-
figured to be routed to the framework module for param-
eterization of a next state logic function. Further, the input
signal interface may be configured to return a state regis-
tered logic from the framework module.

Further, in some embodiments, the plurality of common
synchronous logic components may include an array of state
machines.

Further, in some embodiments, the framework module
may include a first array of records of next state logic
corresponding to an input to the framework module and a
second array of records of state registered logic correspond-
ing to an output of the framework module. Further, an
application module of the plurality of application modules
may be associated with an index corresponding to the array
of state machines.

Further, in some embodiments, the plurality of common
synchronous logic components may include at least one of
a state machine, a counter circuit, and an edge detection
circuit.

Further, in some embodiments, a first standard port inter-
face of a first design pattern may be identical to a second
standard port interface of a second design pattern.

Further, in some embodiments, the programmable logic
device may include at least one of a Field Programmable
Gate Array (FPGA) and an Application Specific Integrated
Circuit (ASIC).

Further, in some embodiments, the plurality of application
modules may include a plurality of design patterns corre-
sponding to a plurality of functionalities. Further, each
functionality of the plurality of functionalities may be fre-
quently used in the PLD.

Further, in some embodiments, the flat framework circuit
data may include at least one of netlist data and a bit-file.

Further, in some embodiments, the framework module
may include a plurality of framework modules. Further, the
plurality of framework modules operates on a plurality of
clock domains with the plurality of application modules.

FIG. 3 is a block diagram of a system 300 for facilitating
designing a programmable logic device (PLD), in accor-
dance with some embodiments. Further, the system 300 may
include a communication device 302, a processing device
304, and a storage device 306.

Further, the communication device 302 may be config-
ured for transmitting a plurality of module indications
corresponding to a plurality of application modules to a
client device. Further, the communication device 302 may
be configured for receiving a Hardware Description Lan-
guage (HDL) code expressing a design of the PLD from the
client device. Further, the HDL code may be based on a
non-hierarchical architecture may include a framework
module and a plurality of application modules. Further, the

US 11,222,156 B2

17

HDL code may include at least one Application Program-
ming Interface (API) call corresponding to at least one
application module of the plurality of application modules.
Further, the at least one API call may include at least one
module indication of the plurality of module indications.
Further, each application module of the plurality of appli-
cation modules may include a standard port interface. Fur-
ther, the framework module may include a plurality of
common synchronous logic components shared by the plu-
rality of application modules through the standard port
interface and an interconnect infrastructure configured to
interconnect the plurality of application modules. Further,
the communication device 302 may be configured for trans-
mitting a flat framework circuit data to the client device.

Further, the processing device 304 may be communica-
tively coupled with the communication device 302. Further,
the processing device 304 may be configured for analyzing
the HDL code. Further, the processing device 304 may be
configured for instantiating the framework module and the at
least one application module based on the retrieving. Fur-
ther, the processing device 304 may be configured for
configuring each of the plurality of common synchronous
logic components and the interconnect infrastructure based
on the at least one API call. Further, the processing device
304 may be configured for generating the flat framework
circuit data corresponding to the PLD based on the instan-
tiating and the configuring.

Further, the storage device 306 may be communicatively
coupled with the processing device 304. Further, the storage
device 306 may be configured for retrieving the at least one
application module and the framework module correspond-
ing to the at least one API call based on the analyzing of the
HDL code.

Further, in some embodiments, the plurality of common
synchronous logic components may be configured by the
plurality of application modules through the standard port
interface.

Further, in some embodiments, the plurality of common
synchronous logic components may be configured by the
plurality of application modules using a low-level signal call
comprised in the HDL code.

Further, in some embodiments, a first application module
of the plurality of application modules may be configured to
communicate with a second application module of the
plurality of application modules based on the standard port
interface through the at least one API call.

Further, in some embodiments, each application module
of the plurality of application modules may be configured to
handle off-chip Input/Output (I0) signals based on low-level
signal assignments comprised in the HDL code.

Further, in some embodiments, each application module
of the plurality of application modules may be configured to
directly access a top-level system port associated with the
PLD.

Further, in some embodiments, the standard port interface
may include an output signal interface and an input signal
interface. Further, the output signal interface may be con-
figured to be routed to the framework module for param-
eterization of a next state logic function. Further, the input
signal interface may be configured to return a state regis-
tered logic from the framework module.

Further, in some embodiments, the plurality of common
synchronous logic components may include an array of state
machines.

Further, in some embodiments, the framework module
may include a first array of records of next state logic
corresponding to an input to the framework module and a

20

25

35

40

45

50

18

second array of records of state registered logic correspond-
ing to an output of the framework module. Further, an
application module of the plurality of application modules
may be associated with an index corresponding to the array
of state machines.

Further, in some embodiments, the plurality of common
synchronous logic components may include at least one of
a state machine, a counter circuit, and an edge detection
circuit.

According to some embodiments, a non-transitory com-
puter-readable medium having stored thereon Hardware
Description Language (HDL) code corresponding to a plu-
rality of application modules corresponding to a plurality of
applications for facilitating designing of a programmable
logic device (PLD) is disclosed. Further, each application
module of the plurality of application modules may include
a standard port interface. Further, the plurality of application
modules may be configured to facilitate designing of the
PLD utilizing a non-hierarchical architecture may include a
framework module and the plurality of application modules.
Further, the framework module may include a plurality of
common synchronous logic components shared by the plu-
rality of application modules through the standard port
interface.

Further, in some embodiments, each application module
may be configured to configure the plurality of common
synchronous logic components through the standard port
interface.

Further, in some embodiments, each application module
may be configured to configure the plurality of common
synchronous logic components using a low-level signal call.

Further, in some embodiments, a first application module
of the plurality of application modules may be configured to
communicate with a second application module of the
plurality of application modules based on the standard port
interface may include an Application Programming Inter-
face (API) call. Further, in an embodiment, the first appli-
cation module may be configured to communicate with the
second application module without being intermediated by a
third application module of the plurality of application
modules.

Further, in some embodiments, each application module
of the plurality of application modules may be configured to
handle off-chip Input/Output (I0) signals based on low-level
signal assignments.

Further, in some embodiments, each application module
of the plurality of application modules may be configured to
directly access a top-level system port associated with the
PLD.

Further, in some embodiments, the standard port interface
may include an output signal interface and an input signal
interface. Further, the output signal interface may be con-
figured to be routed to the framework module for param-
eterization of a next state logic function. Further, the input
signal interface may be configured to return a state regis-
tered logic from the framework module.

Further, in some embodiments, the plurality of common
synchronous logic components may include an array of state
machines.

Further, in some embodiments, the framework module
may include a first array of records of next state logic
corresponding to an input to the framework module and a
second array of records of state registered logic correspond-
ing to an output of the framework module. Further, an
application module of the plurality of application modules
may be associated with an index corresponding to the array
of state machines.

US 11,222,156 B2

19

Further, in some embodiments, the plurality of common
synchronous logic components may include at least one of
a state machine, a counter circuit, and an edge detection
circuit.

Further, in some embodiments, a first standard port inter-
face of a first design pattern may be identical to a second
standard port interface of a second design pattern.

Further, in some embodiments, the programmable logic
device may include at least one of a Field Programmable
Gate Array (FPGA) and an Application Specific Integrated
Circuit (ASIC).

Further, in some embodiments, the plurality of application
modules may include a plurality of design patterns corre-
sponding to a plurality of functionalities. Further, each
functionality of the plurality of functionalities may be fre-
quently used in the PLD.

FIG. 4 is a flowchart of a method 400 to facilitate
generation of a flat framework circuit based on a flat design
architecture, in accordance with some embodiments.
Accordingly, at 402 the method 400 may include a step of
receiving, using a communication device, a plurality of
module data associated with a plurality of modules from at
least one user device. Further, the plurality of modules may
be associated with a logic circuit. Further, the logic circuit
may be configured to perform at least one operation. Further,
each module of the plurality of modules may include at least
one user-defined logic and at least one interface. Further, the
user-defined logic may describe a function of the each
module. Further, the at least one interface may facilitate
communication of the each module with an outside world.
Further, the outside world may include at least one module
that may not be associated with the logic circuit. Further, the
at least one interface may be configured to transmit and/or
receive input signals, output signals, input signals, etc.
Further, the plurality of module data may be associated with
a computer language such as hardware description language
(HDL), very high speed integrated circuit hardware descrip-
tion language (VHSIC-HDL), Verilog, and so on. Further,
the plurality of module data, in an instance, may include
functional data, operational data, configurational data, com-
munication data, etc. Further, the at least one user device
may be associated with at least one user. Further, the at least
one user device may include a computing device configured
to generate the plurality of module data. Further, the com-
puting device may include a desktop, a laptop, a personal
computer, a tablet, etc. Further, the at least one user may be
an individual, an institution, and an organization that may
want to generate the plurality of module data using the at
least one user device.

Further, at 404 the method 400 may include a step of
analyzing, using a processing device, the plurality of module
data to obtain communication configurational data associ-
ated with the plurality of modules. Further, the plurality of
module data may be analyzed to obtain the communication
configurational data. Further, the communication configu-
rational data may be associated with at least one configu-
rational requirement to facilitate communication among the
plurality of modules. Further, the configurational require-
ment may include at least one component and at least one
configuration of the at least one component.

Further, at 406 the method 400 may include a step of
generating, using the processing device, synchronous logic
and an inter-connect framework based on the analyzing.
Further, the synchronous logic and the inter-connect frame-
work may be generated based on the communication con-
figurational data. Further, the each module may use the
synchronous logic and the inter-connect framework to com-

10

15

20

25

30

35

40

45

50

55

60

65

20

municate with the plurality of modules. Further, the syn-
chronous logic may include at least one synchronous com-
ponent. Further, the at least one synchronous component
may include a state machine, a counter circuit, an edge
detection circuit, etc. Further, the inter-connect framework
may be associated with the configuration of the at least one
synchronous component.

Further, at 408 the method 400 may include a step of
configuring, using the processing device, the synchronous
logic and the inter-connect framework to facilitate commu-
nication among the plurality of modules. Further, the syn-
chronous logic and the inter-connect framework may be
configured to facilitate communication among the plurality
of modules. Further, the synchronous logic and the inter-
connect framework may be configured using the at least one
signal call associated with the each module. Further, the at
least one signal call may be associated with the communi-
cation configurational data. Further, the at least one signal
call may include a procedure call within an APIL, low-level
signal call, etc.

Further, at 410 the method 400 may include a step of
generating, using the processing device, a flat framework
circuit based on the synchronous logic, the inter-connect
framework, and the plurality of module data. Further, the flat
framework circuit may be generated based on the synchro-
nous logic, the inter-connect framework, and the plurality of
module data. Further, the flat framework circuit may connect
the plurality of modules using an interconnect infrastructure.
Further, the synchronous logic and the inter-connect frame-
work may facilitate communication among the plurality of
modules using the interconnection infrastructure. Further,
the interconnection infrastructure may include at least one
data path and at least one control path. Further, the at least
one data path and/or the at least one control path may be
independent or loosely coupled with the at least one data
path and/or the at least one control path. Further, the at least
one data path may be associated with a data path crossbar.
Further, the data path crossbar may include a register, a
FIFO, a memory block, etc. Further, the at least one control
path may be associated with a control path crossbar. Further,
the control path crossbar may include a register, a FIFO, a
memory block, etc. Further, each module of the plurality of
modules may directly communicate with the each module
using the flat framework architecture.

Further, at 412 the method 400 may include a step of
transmitting, using the communication device, the flat
framework circuit to the at least one user device. Further, the
flat framework circuit may be transmitted to the at least one
user device associated with at least one user. Further, the at
least one user may use the flat framework circuit to perform
at least one operation.

FIG. 5 is a schematic representation of a flat design
architecture of a programmable logic device (PLD) 500, in
accordance with some embodiments. Further, the flat design
architecture of the PLD 500 may include a plurality of
modules 502-508 and a framework module 510. Further, the
framework module 510 may include synchronous logic, an
inter-connect framework, an interconnection infrastructure.
Further, the plurality of modules 502-508 may be associated
with a common interface. Further, the synchronous logic
may include at least one synchronous logic component.
Further, the synchronous logic component may include a
state machine 602 (as shown in FIG. 6), a counter circuit 702
(as shown in FIG. 7), an edge detection circuit 802 (as
shown in FIG. 8), etc. Further, the state machine 602 may be
associated with a state register. Further, the interconnection
infrastructure may be associated with an independent or

US 11,222,156 B2

21

loosely coupled data path and control path interconnection.
Further, the data path may be associated with a data path
crossbar. Further, the data path crossbar may include a
register, a FIFO 902 (as shown in FIG. 9), a memory block,
etc. Further, the control path may be associated with a
control path crossbar. Further, the control path crossbar may
include the register, the FIFO 902, the memory block, etc.
Further, the at least one interface may be associated with
input signals, output signals, and inout signals.

FIG. 6 is a schematic representation of the state machine
602 of the framework module 510, in accordance with some
embodiments.

FIG. 7 is a schematic representation of the counter circuit
702 of the framework module 510, in accordance with some
embodiments.

FIG. 8 is a schematic representation of the edge detection
circuit 802 of the framework module 510, in accordance
with some embodiments.

FIG. 9 is a schematic representation of the FIFO 902 of
the framework module 510, in accordance with some
embodiments.

FIG. 10 is a schematic representation of a flat framework
chain configuration of the flat design architecture of the
programmable logic device (PLD) 500, in accordance with
some embodiments.

FIG. 11 is a schematic representation of a flat framework
peer to peer configuration of the flat design architecture of
the programmable logic device (PLD) 500, in accordance
with some embodiments.

FIG. 12 is a schematic representation of a flat framework
self-loop back configuration of the flat design architecture of
the programmable logic device (PLD) 500, in accordance
with some embodiments.

With reference to FIG. 13, a system consistent with an
embodiment of the disclosure may include a computing
device or cloud service, such as computing device 1300. In
a basic configuration, computing device 1300 may include at
least one processing unit 1302 and a system memory 1304.
Depending on the configuration and type of computing
device, system memory 1304 may comprise, but is not
limited to, volatile (e.g. random-access memory (RAM)),
non-volatile (e.g. read-only memory (ROM)), flash memory,
or any combination. System memory 1304 may include
operating system 1305, one or more programming modules
1306, and may include a program data 1307. Operating
system 1305, for example, may be suitable for controlling
computing device 1300’s operation. Furthermore, embodi-
ments of the disclosure may be practiced in conjunction with
a graphics library, other operating systems, or any other
application program and is not limited to any particular
application or system. This basic configuration is illustrated
in FIG. 13 by those components within a dashed line 1308.

Computing device 1300 may have additional features or
functionality. For example, computing device 1300 may also
include additional data storage devices (removable and/or
non-removable) such as, for example, magnetic disks, opti-
cal disks, or tape. Such additional storage is illustrated in
FIG. 13 by a removable storage 1309 and a non-removable
storage 1310. Computer storage media may include volatile
and non-volatile, removable and non-removable media
implemented in any method or technology for storage of
information, such as computer-readable instructions, data
structures, program modules, or other data. System memory
1304, removable storage 1309, and non-removable storage
1310 are all computer storage media examples (i.e., memory
storage.) Computer storage media may include, but is not
limited to, RAM, ROM, electrically erasable read-only

15

20

25

30

40

45

55

22

memory (EEPROM), flash memory or other memory tech-
nology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to store information and which
can be accessed by computing device 1300. Any such
computer storage media may be part of device 1300. Com-
puting device 1300 may also have input device(s) 1312 such
as a keyboard, a mouse, a pen, a sound input device, a touch
input device, a location sensor, a camera, a biometric sensor,
etc. Output device(s) 1314 such as a display, speakers, a
printer, etc. may also be included. The aforementioned
devices are examples and others may be used.

Computing device 1300 may also contain a communica-
tion connection 1316 that may allow device 1300 to com-
municate with other computing devices 1318, such as over
a network in a distributed computing environment, for
example, an intranet or the Internet. Communication con-
nection 1316 is one example of communication media.
Communication media may typically be embodied by com-
puter-readable instructions, data structures, program mod-
ules, or other data in a modulated data signal, such as a
carrier wave or other transport mechanism, and includes any
information delivery media. The term “modulated data sig-
nal” may describe a signal that has one or more character-
istics set or changed in such a manner as to encode infor-
mation in the signal. By way of example, and not limitation,
communication media may include wired media such as a
wired network or direct-wired connection, and wireless
media such as acoustic, radio frequency (RF), infrared, and
other wireless media. The term computer-readable media as
used herein may include both storage media and communi-
cation media.

As stated above, a number of program modules and data
files may be stored in system memory 1304, including
operating system 1305. While executing on processing unit
1302, programming modules 1306 may perform processes
including, for example, one or more stages of methods,
algorithms, systems, applications, servers, databases as
described above. The aforementioned process is an example,
and processing unit 1302 may perform other processes.
Other programming modules that may be used in accordance
with embodiments of the present disclosure may include
machine learning applications.

Generally, consistent with embodiments of the disclosure,
program modules may include routines, programs, compo-
nents, data structures, and other types of structures that may
perform particular tasks or that may implement particular
abstract data types. Moreover, embodiments of the disclo-
sure may be practiced with other computer system configu-
rations, including hand-held devices, general-purpose
graphics processor-based systems, multiprocessor systems,
microprocessor-based or programmable consumer electron-
ics, application-specific integrated circuit-based electronics,
minicomputers, mainframe computers, and the like.
Embodiments of the disclosure may also be practiced in
distributed computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed computing
environment, program modules may be located in both local
and remote memory storage devices.

Furthermore, embodiments of the disclosure may be
practiced in an electrical circuit comprising discrete elec-
tronic elements, packaged or integrated electronic chips
containing logic gates, a circuit utilizing a microprocessor,
or on a single chip containing electronic elements or micro-
processors. Embodiments of the disclosure may also be

US 11,222,156 B2

23

practiced using other technologies capable of performing
logical operations such as, for example, AND, OR, and
NOT, including but not limited to mechanical, optical,
fluidic, and quantum technologies. In addition, embodiments
of the disclosure may be practiced within a general-purpose
computer or in any other circuits or systems.

Embodiments of the disclosure, for example, may be
implemented as a computer process (method), a computing
system, or as an article of manufacture, such as a computer
program product or computer-readable media. The computer
program product may be a computer storage media readable
by a computer system and encoding a computer program of
instructions for executing a computer process. The computer
program product may also be a propagated signal on a
carrier readable by a computing system and encoding a
computer program of instructions for executing a computer
process. Accordingly, the present disclosure may be embod-
ied in hardware and/or in software (including firmware,
resident software, micro-code, etc.). In other words, embodi-
ments of the present disclosure may take the form of a
computer program product on a computer-usable or com-
puter-readable storage medium having computer-usable or
computer-readable program code embodied in the medium
for use by or in connection with an instruction execution
system. A computer-usable or computer-readable medium
may be any medium that can contain, store, communicate,
propagate, or transport the program for use by or in con-
nection with the instruction execution system, apparatus, or
device.

The computer-usable or computer-readable medium may
be, for example but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, device, or propagation medium. More specific
computer-readable medium examples (a non-exhaustive
list), the computer-readable medium may include the fol-
lowing: an electrical connection having one or more wires,
a portable computer diskette, a random-access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber, and a portable compact disc read-only memory
(CD-ROM). Note that the computer-usable or computer-
readable medium could even be paper or another suitable
medium upon which the program is printed, as the program
can be electronically captured, via, for instance, optical
scanning of the paper or other medium, then compiled,
interpreted, or otherwise processed in a suitable manner, if
necessary, and then stored in a computer memory.

Embodiments of the present disclosure, for example, are
described above with reference to block diagrams and/or
operational illustrations of methods, systems, and computer
program products according to embodiments of the disclo-
sure. The functions/acts noted in the blocks may occur out
of the order as shown in any flowchart. For example, two
blocks shown in succession may in fact be executed sub-
stantially concurrently or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality/acts involved.

While certain embodiments of the disclosure have been
described, other embodiments may exist. Furthermore,
although embodiments of the present disclosure have been
described as being associated with data stored in memory
and other storage mediums, data can also be stored on or
read from other types of computer-readable media, such as
secondary storage devices, like hard disks, solid-state stor-
age (e.g., USB drive), or a CD-ROM, a carrier wave from
the Internet, or other forms of RAM or ROM. Further, the
disclosed methods’ stages may be modified in any manner,

20

30

40

45

55

24

including by reordering stages and/or inserting or deleting
stages, without departing from the disclosure.

FIG. 14 is an illustration of a code for facilitating instan-
tiation of common components and a framework module, in
accordance with some embodiments.

FIG. 15 is an illustration of a code of a port interface of
an application module, in accordance with some embodi-
ments.

FIG. 16 is an illustration of a code of an application
module, in accordance with some embodiments.

FIG. 17 is an illustration of a code of the application
module, in accordance with some embodiments.

FIG. 18 is an illustration of a simulation of the code of the
application module, in accordance with some embodiments.

FIG. 19 is an illustration of a traditional hierarchal archi-
tecture of a programmable logic device (PLD) 1900. Further,
the traditional hierarchal architecture of the PLLD 1900 may
include a plurality of hierarchal modules 1902-1908. Fur-
ther, the plurality of hierarchal modules 1902-1908 may
include a plurality of synchronous logic components 1910.
Further, the plurality of hierarchal modules 1902-1908 may
be connected using a wired interconnection 1912. Further,
the plurality of hierarchal modules 1902-1908 may be
associated with a plurality of I/O signals 1914-1916.

FIG. 20 is an illustration of a novel flat architecture of a
programmable logic device (PLD) 2000, in accordance with
some embodiments. Further, the novel flat architecture of the
PLD 2000 may include a plurality of application modules
2002-2008 and at least one framework module 2010. Fur-
ther, the at least one framework module 2010 may include
a plurality of synchronous components 2014-2018 and a
logical interconnection 2012. Further, the plurality of appli-
cation modules 2002-2008 may be associated with a plural-
ity of /O signals 2020-2022.

FIG. 21 is a schematic representation of a system 2100 for
facilitating loop testing of the PLD 2000, in accordance with
some embodiments. Further, the system 2100 may include
an oscilloscope 2104, a computing device 2102, and the
PLD 2000. Further, the computing device 2102 may include
a host PC (personal computer), an embedded CPU (central
processing unit), etc. Further, the at least one framework
module 2010 of the PLD 2000 may implement a control
signal interface that may be utilized by the host PC or the
embedded CPU. Further, the host PC or the embedded CPU
may indirectly interface with any of at least one application
module of the plurality of application modules 2002-2008 of
the PLD 2000 through the use of the logical interconnection
2012 provided by the at least one framework module 2010.
Further, the host PC or the embedded CPU may facilitate
in-circuit testing and visualization of at least one state
machine data-path.

FIG. 22 is an illustration of the novel flat architecture of
the programmable logic device (PLD) 2000 without the at
least one framework module 2010, in accordance with some
embodiments. Further, the plurality of I/O signals 2020-
2022 may be destined for a plurality of pins of the PLD
2000. Further, the PLD 2000 may be a FPGA (Field Pro-
grammable Gate Array).

FIG. 23 is an illustration of the novel flat architecture of
the programmable logic device (PLD) 2000, in accordance
with some embodiments. Further, the at least one framework
module 2010 may be associated with at least one clock
domain 2304 and a reset signal 2302. Further, the at least one
framework module 2010 may be operating on the at least
one clock domain 2304 and sharing the reset signal 2302
with at least one application module of the plurality of
application modules 2002-2008.

US 11,222,156 B2

25

FIG. 24 is an illustration of the novel flat architecture of
the programmable logic device (PLD) 2000, in accordance
with some embodiments. Further, the at least one framework
module may include a first framework module 2402 and a
second framework module 2404. Further, the first frame-
work module 2402 may be associated with a first clock
domain 2406 and the second framework module 2404 may
be associated with a second clock domain 2406.

FIG. 25 is a schematic representation of a register 2502,
in accordance with some embodiments.

FIG. 26 is an illustration of a code of a fixed port interface
of an application module, in accordance with some embodi-
ments.

FIG. 27 is an illustration of a code of an API (application
programming interface) call, in accordance with some
embodiments. Further, a logical connection between a plu-
rality of application modules may be made through at least
one framework module by the use of the API procedure call
and may pass a constant integer value.

FIG. 28 is an illustration of a code of the API (application
programming interface) call, in accordance with some
embodiments.

FIG. 29 is an illustration of a code of a package file, in
accordance with some embodiments. Further, the package
file may include an implementation of at least one frame-
work module. Further, the package file may include an
implementation of at least one API (application program-
ming interface) calls.

FIG. 30 is an illustration of a code of an API (application
programming interface) call, in accordance with some
embodiments.

Although the present disclosure has been explained in
relation to its preferred embodiment, it is to be understood
that many other possible modifications and variations can be
made without departing from the spirit and scope of the
disclosure.

The following is claimed:

1. A method of designing a programmable logic device
(PLD), the method comprising:

transmitting, using a communication device, a plurality of

module indications corresponding to a plurality of
application modules to a client device;
receiving, using the communication device, a Hardware
Description Language (HDL) code expressing a design
of the PLD from the client device, wherein the HDL
code is based on a non-hierarchical architecture com-
prising a framework module and a plurality of appli-
cation modules, wherein the HDL code comprises at
least one Application Programming Interface (API) call
corresponding to at least one application module of the
plurality of application modules, wherein the at least
one API call comprises at least one module indication
of the plurality of module indications, wherein each
application module of the plurality of application mod-
ules comprises a standard port interface, wherein the
framework module comprises a plurality of common
synchronous logic components shared by the plurality
of application modules through the standard port inter-
face and an interconnect infrastructure configured to
interconnect the plurality of application modules;

analyzing, using a processing device, the HDL code;

retrieving, using a storage device, the at least one appli-
cation module and the framework module correspond-
ing to the at least one API call based on the analyzing
of the HDL code;

10

25

30

40

45

26

instantiating, using the processing device, the framework
module and the at least one application module based
on the retrieving;

configuring, using the processing device, each of the

plurality of common synchronous logic components
and the interconnect infrastructure based on the at least
one API call,;

generating, using the processing device, a flat framework

circuit data corresponding to the PLD based on the
instantiating and the configuring; and

transmitting, using the communication device, the flat

framework circuit data to the client device.

2. The method of designing a PLD of claim 1, wherein the
plurality of common synchronous logic components is con-
figured by the plurality of application modules through the
standard port interface.

3. The method of designing a PLD of claim 1, wherein the
plurality of common synchronous logic components is con-
figured by the plurality of application modules using a
low-level signal call comprised in the HDL code.

4. The method of designing a PL.D of claim 1, wherein a
first application module of the plurality of application mod-
ules is configured to communicate with a second application
module of the plurality of application modules based on the
standard port interface through the at least one API call.

5. The method of designing a PLD of claim 1, wherein
each application module of the plurality of application
modules is configured to handle off-chip Input/Output (TO)
signals based on low-level signal assignments comprised in
the HDL code.

6. The method of designing a PLD of claim 1, wherein
each application module of the plurality of application
modules is configured to directly access a top-level system
port associated with the PLD.

7. The method of designing a PLD of claim 1, wherein the
standard port interface comprises an output signal interface
and an input signal interface, wherein the output signal
interface is configured to be routed to the framework module
for parameterization of a next state logic function, wherein
the input signal interface is configured to return a state
registered logic from the framework module.

8. The method of designing a PLD of claim 1, wherein the
plurality of common synchronous logic components com-
prises an array of state machines.

9. The method of designing a PLD of claim 1, wherein the
framework module comprises a first array of records of next
state logic corresponding to an input to the framework
module and a second array of records of state registered
logic corresponding to an output of the framework module,
wherein an application module of the plurality of application
modules is associated with an index corresponding to the
array of state machines.

10. The method of designing a PLD of claim 1, wherein
the plurality of common synchronous logic components
comprises at least one of a state machine, a counter circuit,
and an edge detection circuit.

11. The method of designing a PLD of claim 1, wherein
the framework module comprises a plurality of framework
modules, wherein the plurality of framework modules oper-
ates on a plurality of clock domains with the plurality of
application modules.

